§4.6 Operator Methods
Time ordering
Recall that the derivation of the path integral expression involved the crucial step:

$$
\begin{equation*}
\left\langle q_{i}^{\prime} \tau+d \tau \mid q_{i} \tau\right\rangle=\left\langle q_{;}^{\prime} \tau\right| e^{-i H d \tau}\left|q_{i} \tau\right\rangle \tag{1}
\end{equation*}
$$

Hamiltonian H is function $H(Q, P)$

$$
\begin{aligned}
\rightarrow \quad H(Q, P) & =e^{i H t} H(Q, P) e^{-i H t} \\
& =H(Q(t), P(t))
\end{aligned}
$$

adopt a standard form, where all Q_{s} appear to the left of all $P^{\prime} s$.
example: given term $P_{a} Q_{b} P_{c} \subset H$, rewrite as $Q_{b} P_{a} P_{c}$-i $S_{a b} P_{c}$
\rightarrow substituting into (1), we see that $Q_{a}(F)_{s}$ can be replaced with q_{a}^{\prime}

Then, proceeding as in $\S 1$,

$$
\begin{aligned}
& \left\langle q_{i}^{\prime} \tau+d \tau \mid q_{i} \tau\right\rangle \\
= & \int \prod_{a} \frac{d p_{a}}{2 \pi}\left\langle q_{i}^{\prime} \tau\right| \exp (-i H(Q(\tau), P(\tau)) d \tau)\left|p_{i} \tau\right\rangle \\
& \times\left\langle p_{i} \tau \mid q_{i} \tau\right\rangle \\
= & \int \prod_{a} \frac{d p_{a}}{2 \pi} \exp \left[-i H\left(q^{\prime}, p\right) d \tau+i \sum_{a}\left(q_{a}^{\prime}-q_{a}\right) p_{a}\right]
\end{aligned}
$$

with p_{a} integrated from $-\infty$ to (∞).
For a finite time interval, to calculate $\left\langle q^{\prime} ; t^{\prime} \mid q_{i} t\right\rangle$ with $t\left\langle t^{\prime}\right.$, we write

$$
\tau_{k+1}-\tau_{k}=d \tau=\frac{t^{\prime}-t}{N+1}
$$

and

$$
\begin{aligned}
& \left\langle q_{i}^{\prime} t^{\prime} \mid q_{i} t\right\rangle \\
= & \left.\int_{1} d q_{i} \cdot d q_{N}\left\langle q_{i}^{\prime} t^{\prime} \mid q_{M i} \tau_{N}\right\rangle\left\langle q_{N i} \tau_{N} \mid q_{N-1} i \tau_{N-1}\right\rangle \cdots\left\langle q_{1}, \tau, \mid q_{i}\right\rangle\right\rangle
\end{aligned}
$$

\rightarrow inserting eq. (2) gives

$$
=\int\left[\prod_{k=1}^{N} \prod_{a} d q_{k, a}\right]\left[\prod_{k=0}^{N} \prod_{a} d p_{k, a} / 2 \pi\right]
$$

$$
\times \exp \left[i \sum_{k=1}^{N+1}\left(\sum_{a}\left(q_{k, a}-q_{k-1, a}\right)\left(p_{k-1, a}-H\left(q_{k}, p_{k-1}\right) d \tau\right)\right]\right.
$$

where $\quad q_{0}:=q, \quad q_{N+1}:=q^{\prime}$
Taking the limit $N \rightarrow \infty$, gives

$$
\begin{align*}
&\left\langle q^{\prime} i t^{\prime} \mid q_{i} t\right\rangle=\int_{q_{a}(t)=q_{a}} \prod_{\tau, a} d q_{a}(\tau) \prod_{\tau, b} \frac{d p_{b}(\tau)}{2 \pi} \\
& \times \exp \left[i \int_{t}^{q_{a}\left(t^{\prime}\right)=q_{a}^{\prime}} d \tau\left(\sum_{a} \dot{q}_{a}(\tau) p_{a}(\tau)-H(q(\tau), p(\tau))\right)\right]
\end{align*}
$$

integrating ont p then gives the path integral with the Legendre tref. replaced by the Lagrangian L Operator insertions
Consider now general operators $\operatorname{O}(P(\tau), Q(\tau))$, where we order all P_{s} in such operators to the left of all Us.
\rightarrow inserting into (1), gives

$$
\begin{aligned}
& \left\langle q^{\prime} ; \tau+d \tau\right| O\left(P(\tau), Q(\tau)\left|q_{i} \tau\right\rangle\right. \\
= & \int \prod_{a} \frac{d p_{a}}{2 \pi}\left\langle q_{i}^{\prime} \tau\right| \exp (-i H(Q(\tau), P(\tau)) d \tau)\left|p_{i} \tau\right\rangle \\
& \times\left\langle p_{i} \tau\right| O\left(P(\tau), Q(\tau)\left|q_{i} \tau\right\rangle\right. \\
= & \int \prod_{a} \frac{d p_{a}}{2 \pi} \exp \left[-i H\left(q_{1}^{\prime} p\right) d \tau+i \sum_{a}\left(q_{a}^{\prime}-q_{a}\right) p_{a}\right] G(p, q)
\end{aligned}
$$

\rightarrow this allows us to calculate the matrix element of a product $O_{A}\left(P\left(t_{A}\right), Q\left(t_{A}\right)\right) O_{B}\left(P\left(t_{B}\right), Q\left(t_{B}\right)\right) \cdots$ of operators with $t_{A}>t_{B}>\cdots$, by inserting the 0 -operators between the appropriate states in eq. (3) and use (4)
For example, if t_{A} falls between τ_{k} and τ_{k+1}, then insert $\sigma_{A}\left(P\left(t_{1}\right), Q\left(t_{2}\right)\right)$ between $\left\langle q_{k+1} ; \tau_{k+1}\right|$ and $\left|q_{k} ; \tau_{k}\right\rangle$
\rightarrow this is only possible for

$$
t_{A}>t_{B}>\cdots
$$

Following same steps as before, finally gives

$$
\begin{align*}
&\left\langle q^{\prime}, t^{\prime}\right| O_{A}\left(P\left(t_{A}\right), Q\left(t_{A}\right)\right) O_{B}\left(P\left(t_{B}\right), Q\left(t_{B}\right)\right) \ldots\left|q_{1}, t\right\rangle \\
&= \int_{\tau, a} \prod_{z^{\prime}} d q_{a}(\tau) \prod_{\tau, b} \frac{d p_{b}(\tau)}{2 \pi} O_{A}\left(p\left(t_{A}\right), q\left(t_{A}\right)\right) G_{B}\left(p\left(t_{3}\right), q\left(t_{3}\right)\right) \\
& q_{a}(t)=q_{a} \tag{5}\\
& q_{a}\left(t^{\prime}\right)=q_{a}^{\prime} \times \exp \left[i \int_{t}^{t^{\prime}} d \tau\left(\sum_{a} \dot{q}_{a}(\tau) p_{a}(t)-H(q(\tau), p(\tau))\right]\right.
\end{align*}
$$

\rightarrow result only valid if times ordered as

$$
t^{\prime}>t_{A}>t_{B}>\cdots>t
$$

For arbitrary order, the correct expression is

$$
\begin{align*}
& \quad \text { expression is } \\
& \left\langle q^{\prime}, t^{\prime}\right| T\left[G_{A}\left(P\left(t_{A}\right), Q\left(t_{A}\right)\right) G_{B}\left(P\left(t_{B}\right), Q\left(t_{B}\right)\right) \ldots\right]\left|q_{1}, t\right\rangle \\
& =\int_{\substack{\left.q_{a} \\
q_{a} \\
q_{a}(t)=q_{a}\right)=q_{a}^{\prime}}} \prod_{\tau, a} d q_{a}(\tau) \prod_{\tau, b} \frac{d p_{b}(\tau)}{2 \pi} G_{A}\left(p\left(t_{A}\right), q\left(t_{A}\right)\right) G_{B}\left(p\left(t_{A}\right), q\left(q_{B}\right)\right) \tag{6}\\
& \left.i \int_{t}^{t^{\prime}} d \tau\left(\sum_{a} \dot{q}_{a}(\tau) p_{a}(t)-H(q(\tau), p(\tau))\right)\right]
\end{align*}
$$

In QFT we are interested in transition amplitudes between "in" and "out" states $\mid \psi_{\alpha}$, in $\rangle, \mid \psi_{\beta}$, out \rangle. where ψ_{α}, ψ_{s} denote set of particles characterized by various momenta, spin z-component, and species.
\rightarrow to calculate matrix element, we need to multiply (6) by $\left\langle\psi_{s, ~ o u t ~} \mid q^{\prime}, t^{\prime}\right\rangle$ and $\left\langle q, t \mid \psi_{\alpha, i n}\right\rangle$

$$
\begin{aligned}
& \rightarrow\left\langle\psi_{B} \text {, out }\right| T\left[O_{A}\left(P\left(t_{A}\right), Q\left(t_{A}\right)\right) O_{B}\left(P\left(t_{B}\right), Q\left(t_{B}\right)\right)_{i}, \cdots\right]\left|\psi_{\alpha}, n_{n}\right\rangle \\
& =\int \prod_{\tau, x, m} d q_{m}(\vec{x}, \tau) \prod_{\tau, x, m}\left(\frac{d p_{m}(\vec{x}, \tau)}{2 \pi}\right) \\
& \times G_{A}\left(p\left(t_{A}\right), q\left(t_{A}\right)\right) G_{B}\left(p\left(t_{B}\right), q\left(t_{B}\right)\right) . \\
& x \exp \left[i \int_{-\infty}^{\infty} d \tau\left(\int d^{3} x \sum_{m}^{3} \dot{q}_{m}(\vec{x}, \tau) p_{m}(\vec{x}, \tau)-H(q(\tau) p(\tau))\right)\right] \\
& \left.x\left\langle\psi_{p} \text {, in } \mid q(+\infty)_{i}+\infty\right\rangle\left\langle q(-\infty)_{i}-\infty\right| \psi_{\alpha}, \text { in }\right\rangle
\end{aligned}
$$

" S-matrix"

Generalized Ward Identity
Consider field theory invariant under global gauge tres. $\phi_{e} \mapsto \exp \left(i q_{e} \alpha\right) \phi_{e}$
\rightarrow conserved current

$$
\begin{aligned}
\gamma^{\mu} & =-i \sum_{e} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{e}\right)} q_{e} \phi_{e}, \partial_{\mu} \gamma^{-}=0 \\
\rightarrow i \frac{d}{d t} Q & =[Q, H]=0, Q:=\int d^{3} \times J^{0}
\end{aligned}
$$

We have $[\vec{P}, Q]=0,\left[Y^{\sim 2}, Q\right]=0$
translation gen.
Lorentz gen.
Vacuum $|0\rangle$ is Lorentz-invariant state of zero energy and momentum

$$
\rightarrow Q|0\rangle \sim|0\rangle
$$

Proportionality constant is fixed by noting $\langle 0| \mathrm{J},|0\rangle=0$ by Lorentz in .

$$
\rightarrow Q|0\rangle=0
$$

Also $Q\left|\psi_{\bar{p},, n, n}\right\rangle=q_{(n)}\left|\psi_{\bar{p}, \sigma, n}\right\rangle$ electric charge

We have

$$
\begin{aligned}
& {\left[\gamma^{0}(\vec{x}, t), \phi_{e}(\vec{y}, t)\right]=-q_{e} \phi_{e}(\vec{y}, t) \delta^{(3)}(\vec{x}-\vec{y}) } \\
\longrightarrow & {\left[Q, \phi_{e}(y)\right]=-q_{e} \phi_{e}(y) }
\end{aligned}
$$

Same is true for any local function $F(y)$ of fields and field derivatives

$$
[Q, F(y)]=-q_{F} F(y)
$$

sum of all q_{e}^{\prime} s
far all fields and field dens.

$$
\begin{aligned}
& \rightarrow 0=\langle 0| Q F(y)\left|\psi_{\vec{p}, n, n}\right\rangle \\
&=\langle 0|\left[Q, F(y] \psi_{\vec{p}, \sigma, n}|0\rangle\right. \\
&+\langle 0| F(y) \underbrace{Q\left|\psi_{\vec{p}, \sigma, n}\right\rangle} \\
&=q_{(n)}\left|\psi_{\vec{p}, \sigma, n}\right\rangle \\
&=\langle 0| F(y)\left|\psi_{\vec{p}, \sigma, n}\right\rangle\left(q_{F}-q_{(n)}\right)
\end{aligned}
$$

$\rightarrow q_{c u l}=q_{F}$ as long as

$$
\langle 0| F(y)\left|\psi_{\bar{b}, 0, i}\right\rangle \neq 0
$$

